Disconjugacy and the Secant Conjecture

نویسنده

  • Alexandre Eremenko
چکیده

We discuss the so-called secant conjecture in real algebraic geometry, and show that it follows from another interesting conjecture, about disconjugacy of vector spaces of real polynomials in one variable. AMS Class 2010: 14P99, 34C10, 26C10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extremal Secant Conjecture for Curves of Arbitrary Gonality

We prove the Green–Lazarsfeld Secant Conjecture [GL1, Conjecture (3.4)] for extremal line bundles on curves of arbitrary gonality, subject to explicit genericity assumptions.

متن کامل

The Monotone Secant Conjecture in the Real Schubert Calculus

The monotone secant conjecture posits a rich class of polynomial systems, all of whose solutions are real. These systems come from the Schubert calculus on flag manifolds, and the monotone secant conjecture is a compelling generalization of the Shapiro conjecture for Grassmannians (Theorem of Mukhin, Tarasov, and Varchenko). We present some theoretical evidence for this conjecture, as well as c...

متن کامل

The Generic Green-lazarsfeld Secant Conjecture

Using lattice theory on specialK3 surfaces, calculations on moduli stacks of pointed curves and Voisin’s proof of Green’s Conjecture on syzygies of canonical curves, we prove the Prym-Green Conjecture on the naturality of the resolution of a general Prym-canonical curve of odd genus, as well as (many cases of) the Green-Lazarsfeld Secant Conjecture on syzygies of non-special line bundles on gen...

متن کامل

On the Ideals of Secant Varieties of Segre Varieties

We establish basic techniques for studying the ideals of secant varieties of Segre varieties. We solve a conjecture of Garcia, Stillman and Sturmfels on the generators of the ideal of the first secant variety in the case of three factors and solve the conjecture set-theoretically for an arbitrary number of factors. We determine the low degree components of the ideals of secant varieties of smal...

متن کامل

The Secant Conjecture in the Real Schubert Calculus

We formulate the Secant Conjecture, which is a generalization of the Shapiro Conjecture for Grassmannians. It asserts that an intersection of Schubert varieties in a Grassmannian is transverse with all points real if the flags defining the Schubert varieties are secant along disjoint intervals of a rational normal curve. We present theoretical evidence for this conjecture as well as computation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012